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Image processing techniques play an increasingly important role in many aspects of our daily life.  For 
example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting 
or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as 
remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image 
processing systems are designed for small-scale and local computation, and they do not scale well to handle big 
data problems with their large requirements for computational resources and storage. In this paper, we have 
proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support 
large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation 
model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which 
are frequently used in image processing. In our experiment, we show that our platform outperforms traditional 
system in a scenario of image segmentation. 

 

1. Introduction 
There are many applications of image processing in 

agriculture such as plant pest detection and fruit grading [1]. 
The image processing techniques can be used to enhance 
agricultural practices, by improving accuracy and consistency 

Often, it offers flexibility and effectively substitutes the 
In recent years, however, 

with the rapid growth of agriculture, a large amount of image 
data has been accumulating from greenhouses. When 
processing this massive data resource has been limited to 
single computers, computational power, and storage ability 
quickly become bottlenecks. Alternately, processing tasks can 
typically be performed on a distributed system by dividing the 
task into several subtasks. The ability to parallelize tasks 
allows for scalable, efficient execution of resource-intensive 
applications. 

Recently, there are several researchers focused on 
Hadoop/MapReduce [2] platform which provides a system for 
computationally intensive data processing and distributed 
storage. There are three main frameworks that designed for 
image processing in Hadoop: HIPI (Hadoop Image 
Processing Interface) [3], OpenIMAJ (Open Intelligent 
Multimedia Analysis for Java) [4], and MIPr (Mapreduce 
Image Processing) [5]. HIPI is a framework that is 
specifically designed to enable image processing in Hadoop. 
OpenIMAJ is a set of Java libraries for image and video 
analysis, some of OpenIMAJ tools have Hadoop 
implementation. The MIPr framework provides the image 
representations in the internal Hadoop formats, the 
input/output tools for image processing integration into 
Hadoop data workflow, and the image processing API for 
developers who are not familiar with Hadoop.  However, 
these frameworks are required to modify the image storage 
such as HIP files in HIPI framework, which creates additional 

overhead in programming. In our work, we get automatically 
the images from the remote sensors and store them in HDFS, 
in which there is no additional programming overhead for 
users to handle image storage. 

In this paper, we have developed a Hadoop-based system 
with the aims of providing IPABigData platform specific 
enough to contain a relevant framework applicable for image 
processing in agriculture. We use Hadoop because this 
framework is designed to store and process big data on large-
scale distributed systems with simplified parallel 
programming models. 

Our work makes the following contributions: 

 First, we proposed a new design of big data platform 
for image processing by using Hadoop. The platform 
provides the modules for processing the image data. 

 Second, we implemented algorithms in MapReduce 
for image processing which are used to interpret the 
image content such as image grayscale and image 
segmentation, in parallel. 

 Final, the experimental results showed that processing 
big image dataset of our platform is faster than a 
traditional system. The results also show the viability 
of application of our system in agricultural data. 

2. Background 

2.1. Image Processing Algorithms 

  We consider implementation of multiple variations of 
widely-used current image processing algorithms which are 
essential for data analysis in agriculture such as plant pest 
detection and fruit grading. 

1) Image Histogram 
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A histogram is an array of numbers in which each 
element, bin, corresponding to the frequency of a range of 
values in the given data [6]. For instance, each bin counts the 
number of pixels having the same color values in the case of 
an image histogram. Thus, a histogram is a mapping from the 
set of data values to the set of non-negative real numbers. 

2) Image Segmentation using Ots  method 

Image segmentation is the process of partitioning 
a digital image into multiple segments (sets of pixels).  
Each of the pixels in a region is similar with respect to some 
characteristic or computed property, such as color, intensity, 
or texture. Adjacent regions are significantly different with 
respect to the same characteristics.  

Ots  method is used to automatically perform 
clustering-based image thresholding or the reduction of a 
gray level image to a binary image [7].  The idea of Ots  
method is to find out a threshold which maximizes the 
between-class variance.  This idea can be represented by the 
algorithm as follows. 

Step 1: Compute histogram and probabilities of each 
intensity level 

Step 2: Set up initial class probability and class mean
with threshold t = 0

Step 3: Loop through all possible thresholds from t = 1 to 
maximum intensity 

-Update  and , and compute class variance  

Step 4: Get threshold corresponding to the maximum  

2.2. Hadoop/MapReduce 

   Hadoop consists of two components of HDFS and 
MapReduce, which are respectively the implement of 

. MapReduce is a 
programming model that supports to run programs in parallel 
on large distributed system. This model uses a map function 
that processes a key/value to generate a set of intermediate 
key/value pair and a reduce function that gathers all values 
with the same intermediate key to process and returns the 
results. A MapReduce program is automatically parallelized 
and executed on a large cluster of commodity machines. A 
MapReduce job usually splits the input dataset into 
independent chunks that are processed by map tasks. The 
outputs of map tasks are sorted, then they are used as inputs 
to reduce tasks. Typically, both of input and output of a 
MapReduce job are stored in the HDFS. The job is finished 
when all map tasks and reduce tasks are completed. 

2.3. Image Processing and Hadoop 
   In this section, we present how to apply 
Hadoop/MapReduce for image processing through an 
example in which the image histogram calculation is 
performed in parallel and distributed manner. In this example, 
we consider to 5x5 pixel of a grayscale image as shown in 
Figure 1. 

   The original image has three intensity levels in histogram 
including i1, i2, i3. To calculate the histogram for this image 
using MapReduce, the original image is spliced into sub-

images and store on HDFS. In this case, we have five sub-
image from FileSplit1 to FileSplit5. Then, we perform three 
steps as shown in Figure 2. 
 

 
 

Figure 1. A 5x5 pixel grayscale image 

 

 
Figure 2. Image histogram calculation using MapReduce 

 

Step 1: Each file is read, then calculate the intensities by Map 
Task. The input for each Map Task is a pair (key, value), in 
which key is identified by file name and value is the content 
of sub-image. The output of Map function is the list of 

, in which  is the intensity level and  is 
the number of pixels corresponds to the intensity level . 

Step 2: It collects all of  pairs of Map tasks, then 
sort and shuffle by  value. The pairs with the same  
usually are gathered belong to a group which will be 
processed by the same Reduce Tasks. 

Step 3: In the reduce phase, the input is the output of the 
combiner in Step 2, each Reduce Task has a different key. In 
this example, the key for each reduce task is chosen 
corresponds to each intensity level in the image. This phase 
performs a calculation total of pixels for each intensity level. 
By assembling the output of each reduce task, we can get the 
final result that is a histogram of the original image. 

3. Design and Implementation of IPABigData Platform 

3.1. The Architecture of IPABigData platform
Our goal is to build a Big Data platform for plant pest 

detecting. The platform is designed to run on Hadoop 
environment. The IPABigData overall architecture includes 
three mains layers as shown in Figure 3. The lowest layer as 
the infrastructure layer that includes multi-cluster (nodes) to 
build a Hadoop-based system for storing and processing data. 
The second layer, Image Processing Algorithms, provides the 
algorithms that apply well-known techniques for image 
processing such as histogram calculation, and image 
segmentations. This layer includes three components: Low-
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level Image Processing, High-level Image Processing, and 
Image Data Analysis. The third layer is a Decision Making 
Support System, which provides some suggestions to user for 
find out some plant pests or fruit grading based the 
information of Image Data Analysis in the second layer. 

 
Figure 3. The architecture of IPABigData platform. 

3.2. Implementation of Input Format 
In Hadoop, the input data need to be processed by 

InputFormat class at first and then pass to each mapper 
through the standard input. The InputFormat class in Hadoop 
is used to handle input data for Map/reduce job, which need 
to be customized for different data formats. The InputFormat 
class describes the input data format and define how to split 
the input data into InputSplits buffer, which will be sent to 
each mapper. Another class, RecordReader, is called by 
mapper to read data from each InputSplit. 

For image processing in Hadoop, we implement 
ImageFileInputFormat class to extend FileInputFormat 
class in Hadoop, which returns false  in isSplitable and 
creates ImageFileRecordReader class instance in get 
RecordReader. ImageFileRecordReader will create 
Key/Value pair for mapper and read the whole content of 
input image file actually. 

3.3. Implementation of Output Format 

 The OutputFormat interface determines how the results 
of a MapReduce job are stored. In Hadoop framework, there 
are several classes and interfaces with different types of 
formats, and customization is done by extending one of these. 
The default class of OutputFormat is TextOutputFormat in 
which the lines are separated and a tab character is used to 
separate the key/value pair. In this paper, after processing 
data, the results are image files, because of that we have 
implemented an ImageFileOutputFormat class extends 
FileOutputFormat class. 

3.4. Implementation of Image Processing Algorithms 
In our platform, image processing operations can be 

divided into two levels including low-level image processing 
and high-level image processing.   

1) Low-level Image Processing Algorithms 
The low level is also called image pre-processing that 

operates at the pixel level [8]. The input to low-level image 
processing operators is an image whereas the output is either 
image or data. Few examples of low-level image processing 
operators are contrasted enhancement, noise reduction, and 
noise removal in an image. They are also used for edge 
detection and various image transformations or calculation of 
simple characteristics such as contours histograms.  

2) High-level Image Processing Algorithms 
The high-level image processing operations operate in 

order to generate higher abstractions [9]. They work on 
abstractions derived from intermediate-level image 
processing operators. They are used to interpret the image 
content such as classification and object recognition. 

4. Evaluation 

4.1. Evaluation Settings 
The settings for experiments used to execute algorithms in 

this paper are described as following. 

Environment setting. We deploy our framework with 
five machines: one machine for master node, and four others 
for compute nodes. Each compute node has 4 physical CPU 
cores and 8GB of RAM. All algorithms are implemented in 
Java. 

Image Dataset. Our experiment uses the data related to 
crop/weed images which are collected from the Internet. To 
show the performance of our platform with big image data, 
we prepare multiple dataset of images with a different number 
of images and volume as Table 1. 

Table 1. The various size of image dataset 

Number of 
images 

Volume 
(MB) 

100 153 
200 301 
400 590 
600 891 
800 1229 

4.2. Evaluation Results 
In this section, we present experimental results of using 

our platform for image segmentation of agriculture image 
dataset as described above. For image segmentation, in our 
platform, we implemented (1) an algorithm for converting the 
color image to grayscale image and (2) Ots  algorithm for 
the binarizing image, which are in Low-level Image 
Processing module. We also implemented a program in Java 
which conducts the same algorithms in a single machine, and 
we named using this program as Local-based approach 
through this evaluation. Then, we run the experiment and get 
the results as shown in Figure 4. 
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Figure 4. Comparison of execution time between IPABigData 
platform based on Hadoop (24 CPU cores) and a Local-based 
approach. 

 

 
Figure 5. Efficient of increasing number of CPU cores on 
IPABigData platform based on Hadoop 
 

Figure 4 shows the results of execution time in the 
experiment. With a small image dataset (100 images), the 
execution time of Local-based approach is smaller than our 
platform. Because the system with Hadoop needs to 
read/write the data at the initial state of the whole process, so 
it spends more time to setup the process. However, with a 
large image data set more than 400 images, our IPABigData 
platform executes faster than the Local-based approach. It 
shows that our platform is more scalable in aspects of the 
volume of input datasets. 

To evaluate the efficiency and scalability, we varied the 
number of CPU cores of our system for conducting map 
tasks and reduce tasks from 8 to 32. In this experiment, we 
ran our platform for image segmentation algorithm with 400 
images. We observed that the execution time decreases 
dynamically when we increase the number of CPU, as shown 
in Figure 5. The execution time with 8 CPU cores takes more 
1000 seconds; meanwhile, the execution time with 32 CPU 
cores decreases down to 229 seconds. That is, our platform is 
much more efficient and scalable than the Local-based 
approach in the aspects of processing power. 

5. Conclusion 
The massive quantities of images generated in real-time 

through multi-devices during monitoring of plant growth in 
agriculture leads to the challenges of big data. In this paper, 
we have proposed a Hadoop based IPABigData platform and 
implemented map/reduce compatible algorithms to support 
large-scale image processing in agriculture. Our experiment 
showed that IPABigData platform outperforms traditional 
local computing based approach in the aspects of execution 
time of conducting image segmentation of large image data 
set. In future works, we will focus on improving the 
performance of our proposed platform, and provide more 
algorithms for image processing in agriculture. 
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